Grassmann Graphs Are Distance-Regular
I would like to verify that Grassmann graphs are distance-regular and derive general expressions for their intersection arrays.
Suppose that we are given arbitrary natural number \(n\), a natural number \(k \leq n\), and a prime power \(q\). Let \(S = \{ W : W \leq V \operatorname{and} \operatorname{dim}(W) = k \}\) denote the set of \(k\)-dimensional subspaces of a vector space \(V\) over the finite field \(F_{q}\) of order \(q\). Consider the simple graph \(G=(S,E)\) formed with the set \(S\) as vertices and the set \(E=\{\{W,Z\} : W,Z \in S \operatorname{and} \operatorname{dim}(W \cap Z)= k - 1\}\) as edges. Select an arbitrary pair of vertices \(X, Y \in S\), and let \(j\) denote the graph distance between them. Then:
-
Firstly, let \(N_{j+1}(X) = \{ Z : Z \in S \operatorname{and} d(X, Z) = j + 1 \}\) and \(N_1(Y) = \{ Z : Z \in S \operatorname{and} d(Y,Z) = 1 \}\).
Now, select an arbitrary \(W \in N_{j+1}(X) \cap N_1(Y)\).
\[\implies \operatorname{dim}(W \cap X \cap Y) \in \{ k - j - 1 , k - j \}\][ since \(\operatorname{dim}(W \cap Y) = k - 1\), \(\operatorname{dim}(X \cap Y) = k - j\), and \(X \cap Y \leq Y\) ]
\[\implies W \cap X \cap Y = W \cap X\][ since \(W \cap X \cap Y \leq W \cap X\) and \(\operatorname{dim}(W \cap X) = k - j - 1\) ]
Secondly, let \(R = \{ Z : Z \leq V \operatorname{and} \operatorname{dim}(Z \cap (X + Y)) = 0 \}\), \(S_1(R) = \{ L : L \in R \operatorname{and} \operatorname{dim}(L) = 1 \}\), \(S_{k-j-1}(X \cap Y) = \{ Z : Z \leq (X \cap Y) \operatorname{and} \operatorname{dim}(Z) = k-j-1 \}\), \(Q = \{ Z : Z \leq Y \operatorname{and} \operatorname{dim}(X \cap Z) = 0 \}\), \(S_j(Q) = \{ Z : Z \in Q \operatorname{and} \operatorname{dim}(Z) = j \}\), and \(T = \{ L \oplus M \oplus Z : L \in S_1(R), M \in S_{k-j-1}(X \cap Y), \operatorname{and} Z \in S_{j}(Q) \}\).
\[\implies W \cap Y = (W \cap X \cap Y) \oplus Z\][ for some \(Z \in S_j(Q)\), since \(\operatorname{dim}(W \cap Y) = k - 1 = (k - j - 1) + j\) and \(\operatorname{dim}(W \cap X \cap Y) = k - j - 1\) ]
\[\implies W = L \oplus (W \cap Y) = L \oplus (W \cap X \cap Y) \oplus Z\][ for some \(L \in S_1(R)\), since \(\operatorname{dim}(W) = k\), and by similar reasoning as in the previous inference ]
\[\implies W \in T\] \[\implies N_{j+1}(X) \cap N_1(Y) \subseteq T\][ since W is arbitrary ]
\[\implies N_{j+1}(X) \cap N_1(Y) = T\][ assuming \(T \subseteq N_{j+1}(X) \cap N_1(Y)\) as well, which is straightforward to check ]
Thirdly, select arbitrary \(Z_1, Z_2 \in S_{j}(Q)\). Then, independent of any choice of \(M \in S_{k-j-1}(X \cap Y)\), it is possible to deduce that:
\[\operatorname{dim}((M \oplus Z_1) \cap (M \oplus Z_2))\] \[= \operatorname{dim}(M \oplus (Z_1 \cap Z_2))\] \[= \operatorname{dim}(M) + \operatorname{dim}(Z_1 \cap Z_2)\] \[= (k - j - 1) + \operatorname{dim}(Z_1 \cap Z_2)\] \[\in \{ k - 2, k - 1 \}\] \[\implies \operatorname{dim}(Z_1 \cap Z_2) \in \{ j - 1, j \}\]It follows that, in general, the dimension of the intersection of any pair of subspaces in \(S_{j}(Q)\) is either \(j-1\) or \(j\).
Now, select arbitrary \(M_1, M_2 \in S_{k-j-1}(X \cap Y)\) such that \(M_1 \neq M_2\), and select arbitrary \(Z_1, Z_2 \in S_j(Q)\) Assume that \(\operatorname{dim}(Z_1 \cap Z_2) = j - 1\). Then:
\[\operatorname{dim}((M_1 \oplus Z_1) \cap (M_2 \oplus Z_2))\] \[= \operatorname{dim}((M_1 \cap M_2) \oplus (Z_1 \cap Z_2))\] \[= (k - j - 2) + (j - 1)\] \[= k - 3\]Yet, \(M_1 \oplus Z_1\) and \(M_2 \oplus Z_2\) are distinct \(k-1\) dimensional subspaces of \(Y\).
\[\implies \operatorname{dim}((M_1 \oplus Z_1) \cap (M_2 \oplus Z_2)) = k - 2 \neq k - 3\] \[\implies \operatorname{dim}(Z_1 \cap Z_2) \neq j - 1\][ i.e. the hypothesis in context is false, since a contradiction has been established ]
\[\implies \operatorname{dim}(Z_1^{'} \cap Z_2^{'}) = j \text { for all } Z_1^{'}, Z_2^{'} \in S_j(Q)\] \[\implies \lvert S_j(Q) \rvert = 1\]Lastly, partition \(T = \left ( \bigsqcup\limits_{M \in S_{k-j-1}(X \cap Y)} T_{M} \right )\) into disjoint subsets, letting \(T_{M} = \{ L \oplus M \oplus Z : L \in S_1(R), M \in S_{k-j-1}(X \cap Y), \operatorname{and} Z \in S_{j}(Q) \}\) for each \(M \in S_{k-j-1}(X \cap Y)\). Then:
\[\left\vert N_{j+1}(X) \cap N_1(Y) \right\vert\] \[= \left\vert T \right\vert\] \[= \left\vert \left ( \bigsqcup\limits_{M \in S_{k-j-1}(X \cap Y)} T_{M} \right ) \right\vert\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \left\vert T_M \right\vert\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \left\vert \{ (L \oplus M : L \in S_1(R) \operatorname{and} M \in S_{k-j-1}(X \cap Y) \} \right\vert\][ since, by the previous point, \(\lvert S_j(Q) \rvert = 1\) ]
\[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \sum\limits_{L_1 \in (V \setminus (X + Y)) } \left( \frac{\lvert \{ L_1 \oplus M \} \rvert }{\lvert \{ L_2 : L_2 \in (V \setminus (X + Y)) \operatorname{and} L_1 \oplus M = L_2 \oplus M \rvert} \right )\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \sum\limits_{L \in (V \setminus (X + Y)) } \left( \frac{1}{\lvert L \oplus M \rvert - \lvert M \rvert} \right )\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \sum\limits_{L \in (V \setminus (X + Y)) } \left( \frac{1}{q^{k-j} - q^{ k - j - 1}} \right)\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \left ( \frac{\lvert V \setminus (X + Y) \rvert }{q^{k-j} - q^{k-j-1}} \right )\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \left ( \frac{q^{n} - q^{k+j}}{q^{k-j} - q^{k-j-1}} \right )\] \[= \sum\limits_{M \in S_{k-j-1}(X \cap Y)} \left ( q^{2j + 1} {n - k - j \brack 1 }_{q} \right )\] \[= { k - j \brack 1 }_{q} \left ( q^{2j + 1} {n - k - j \brack 1 }_{q} \right )\] \[= q^{2j + 1} { k - j \brack 1 }_{q} {n - k - j \brack 1 }_{q}\]which only depends on \(d(X,Y) = j\).
-
Firstly, let \(R = \{ Z : Z \leq X \operatorname{and} \operatorname{dim}(X \cap Z) = 0 \}\), \(Q = \{ Z : Z \leq Y \operatorname{and} \operatorname{dim}(Y \cap Z) = 0 \}\), \(S_1(R) = \{ L : L \in R \operatorname{and} \operatorname{dim}(L) = 1 \}\), \(S_{j-1}(Q) = \{ Z : Z \in Q \operatorname{and} \operatorname{dim}(Z) = j - 1 \}\), and \(T = \{ (X \cap Y) \oplus L \oplus Z : L \in S_1(R) \operatorname{and} Z \in S_{j-1}(Q) \}\).
Secondly, let \(N_{j-1}(X) = \{ Z : Z \in S \operatorname{and} d(X, Z) = j - 1 \}\) and \(N_1(Y) = \{ Z : Z \in S \operatorname{and} d(Y,Z) = 1 \}\).
Now, select an arbitrary \(W \in N_{j-1}(X) \cap N_{1}(Y)\).
\(\implies W \cap X = (X \cap Y) \oplus L\) and \(W \cap Y = (X \cap Y) \oplus Z\)
[ for some \(L \in S_1(R)\) and some \(Z \in S_{j-1}(Q)\) ]
\[\implies W = (W \cap X) + (W \cap Y) = (X \cap Y) \oplus L \oplus Z\][ since \(((W \cap X) + (W \cap Y)) \leq W\), and \(\operatorname{dim}((W \cap X) + (W \cap Y)) = \operatorname{dim}((X \cap Y) \oplus L \oplus Z) = (k - j) + 1 + j -1 = k = \operatorname{dim}(W)\) ]
\[\implies W \in T\] \[\implies N_{j-1}(X) \cap N_{1}(Y) \subseteq T\][ since \(W\) is arbitrary ]
\[\implies N_{j-1}(X) \cap N_{1}(Y) = T\][ assuming that \(T \subseteq N_{j-1}(X) \cap N_{1}(Y)\) as well, which is straightforward to check ]
Thirdly, let \(S_j(R) = \{ Z : Z \in R \operatorname{and} \operatorname{dim}(Z) = j \}\).
Now, assume that \(\operatorname{dim}(Z_1 \cap Z_2) < j\) for some \(Z_1, Z_2 \in S_j(R)\).
\[\implies \operatorname{dim}(((X \cap Y) \oplus Z_1) \cap ((X \cap Y) \oplus Z_2))\] \[= \operatorname{dim}((X \cap Y) \oplus (Z_1 \cap Z_2))\] \[= \operatorname{dim}(X \cap Y) + \operatorname{dim}(Z_1 \cap Z_2)\] \[= (k - j) + \operatorname{dim}(Z_1 \cap Z_2)\] \[< k\]Yet, \(\operatorname{dim}((X \cap Y) \oplus Z_1) \cap ((X \cap Y) \oplus Z_2)) = \operatorname{dim}(X \cap X) = \operatorname{dim}(X) = k\).
\[\implies \operatorname{dim}(Z_1 \cap Z_2) \nless j\] \[\implies \operatorname{dim}(Z_1^{'} \cap Z_2^{'}) = j \text{ for all } Z_1^{'}, Z_2^{'} \in S_j(R)\] \[\implies \lvert S_j(R) \rvert = 1\]By similar reasoning, \(\lvert S_j(Q) \rvert = 1\), letting \(S_j(Q) = \{ Z : Z \in Q \operatorname{and} \operatorname{dim}(Z) = j \}\).
Since \(\operatorname{X \cap Y} = k - j\), it is apparent now that \(S_1(R) = \{ L : L \leq X_0 \operatorname{and} \operatorname{dim}(L) = 1 \}\), letting \(X_0\) denote the only element of \(S_j(R)\); likewise, it is apparent now that \(S_{j-1}(Q) = \{ Z : Z \leq Y_{0} \operatorname{and} \operatorname{dim}(Z) = j - 1 \}\), letting \(Y_0\) denote the only element of \(S_{j}(Q)\).
\[\implies \lvert N_{j-1}(X) \cap N_{1}(Y) \rvert\] \[= \lvert T \rvert\] \[= \left\vert \left ( \bigsqcup\limits_{L \in S_1(R)} \{ (X \cap Y) \oplus L \oplus Z : Z \in S_{j-1}(Q) \} \right ) \right\vert\] \[= \sum\limits_{L \in S_1(R)} \lvert \{ (X \cap Y) \oplus L \oplus Z : Z \in S_{j-1}(Q) \} \rvert\] \[= \sum\limits_{L \in S_1(R)} \lvert S_{j-1}(Q) \rvert\] \[= \sum\limits_{L \in S_1(R)} \lvert \{ Z : Z \leq Y_{0} \operatorname{and} \operatorname{dim}(Z) = j - 1 \} \rvert\] \[= \sum\limits_{L \in S_1(R)} \left ( { j \brack j - 1 }_q \right )\] \[= \left ( \lvert \{ L : L \leq X_0 \operatorname{and} \operatorname{dim}(L) = 1 \} \rvert \right ) \left ( { j \brack j - 1 }_q \right )\] \[= {j \brack 1}_q {j \brack j - 1}_q\] \[= {j \brack 1 }_q^2\]which depends only on \(d(X, Y) = j\).
It turns out that 1. and 2. are sufficient to establish that \(G\) is distance-regular.
Therefore every Grassmann graph is distance-regular, since \(G\) is arbitrary.
A general expression for the intersection array of a Grassmann graph is immediate from 1. and 2. as well.