Counting Subspaces over Finite Fields
I would like to verify some useful identities that hold about Gaussian binomial coefficients, which are namely used in the context of counting the number of subspaces of a certain dimension of a finite-dimensional vector space over a finite field.
Fix a prime power \(q\).
Define:
-
\[{ \cdot \brack \cdot}_q : \mathbb{N}_{0} \times \mathbb{N}_{0} \to \mathbb{R}\]
\[{n \brack k }_q := \begin{cases} \prod\limits_{j = 1}^{k} \frac{q^{n} - q^{j - 1}}{q^{k} - q^{j - 1}} & \text{ if } 0 < k \leq n \\ 1 & \text { if } k = 0 \\ 0 & \text{ otherwise } \end{cases}\]
Note that \({n \brack k }_q\) gives the number of \(k\)-dimensional subspaces of an \(n\)-dimensional vector space over a finite field of order \(q\) for all \(n,k \in \mathbb{N}\).
- \[[\cdot]_q ! : \mathbb{N}_{0} \to \mathbb{R}\] \[[n]_q ! := \begin{cases} \prod\limits_{j = 1}^{n} {n - (j - 1) \brack 1}_q & \text{ if } n \in \mathbb{N} \\ 1 & \text{ if } n = 0 \end{cases}\]
Then, in this context I would propose that:
-
\[{ n \brack k }_{q} = \frac{ [n]_q ! }{ {[k]_q !} {[n-k]_q !}}\]
for all \(n, k \in \mathbb{N} \text{ such that } k \leq n\).
-
\[{ n \brack k }_{q} = {n - 1 \brack k }_{q} + q^{n-k} { n - 1 \brack k - 1 }_{q} = q^{k} { n - 1 \brack k }_{q} + {n - 1 \brack k - 1}_{q}\]
for all \(n, k \in \mathbb{N} \text{ such that } k < n\).
-
For all algebras \(\mathcal{A}\) over \(\mathbb{R}\) and \(X, Y \in \mathcal{A}\) such that \(YX = qXY\),
\[(X + Y)^{n} = \sum\limits_{k = 0}^{n} {n \brack k}_q X^k Y^{n-k}\]for all \(n \in \mathbb{N}\).
-
\[{n \brack k}_q = \sum\limits_{j=0}^{m} q^{(m - j)(k - j)} { m \brack j }_q { n - m \brack k - j }_q\]
for all \(n, k, m \in \mathbb{N}\) such that \(m \leq k \leq n\).
I would now like to verify that these propositions are true in this context. Then:
-
Select arbitrary natural numbers \(n\) and \(k\) such that \(k \leq n\).
\[\implies { n \brack k }_{q}\] \[= \prod\limits_{j = 1}^{k} \frac{q^{n} - q^{j - 1}}{q^{k} - q^{j - 1}}\] \[= \left ( \prod\limits_{j = 1}^{k} \frac{q^{n} - q^{j - 1}}{q^{k} - q^{j - 1}} \right ) \left ( \prod\limits_{j = k + 1}^{n} \frac{q^{n} - q^{j-1}}{q^{k} - q^{j - 1}} \right )\] \[= \frac{ \left( \prod\limits_{j = 1}^{n} q^{n} - q^{j - 1} \right )}{\left ( \prod\limits_{j = 1}^{k} q^{k} - q^{j - 1} \right ) \left ( \prod\limits_{j = k + 1}^{n} q^{k} - q^{j - 1} \right ) }\] \[= \frac{ \left ( \prod_\limits{j = 1}^{n} q^{j - 1} \right ) \left( \prod\limits_{j = 1}^{n} q^{n - (j - 1)} - 1 \right )}{\left ( \left ( \prod_\limits{j = 1}^{k} q^{j - 1} \right ) \left ( \prod\limits_{j = 1}^{k} q^{k - (j - 1)} - 1 \right ) \right ) \left ( \left ( \prod_\limits{j = k + 1}^{n} q^{j - 1} \right ) \left ( \prod\limits_{j = k + 1}^{n} q^{k - (j - 1)} - 1 \right ) \right ) }\] \[= \frac{ \left( \prod\limits_{j = 1}^{n} q^{n - (j - 1)} - 1 \right )}{ \left ( \prod\limits_{j = 1}^{k} q^{k - (j - 1)} - 1 \right ) \left ( \prod\limits_{j = k + 1}^{n} q^{k - (j - 1)} - 1 \right ) }\] \[= \frac{ \left( \prod\limits_{j = 1}^{n} \frac{q^{n - (j - 1)} - 1}{q-1} \right )}{ \left ( \prod\limits_{j = 1}^{k} \frac{q^{k - (j - 1)} - 1}{q-1} \right ) \left ( \prod\limits_{j = k + 1}^{n} \frac{q^{k - (j - 1)} - 1}{q-1} \right ) }\] \[= \frac{ [n]_q ! }{ {[k]_q !} {[n-k]_q !}}\]and the general result then follows.
-
Select arbitrary natural numbers \(n\) and \(k\) such that \(k < n\).
\[\implies { n \brack k }_{q}\] \[= \left ( \frac{q^{n} - 1}{q^{k} - 1} \right ) { n - 1 \brack k - 1 }_{q}\] \[= \left ( \frac{q^{n} - q^{n-k} + q^{n-k} - 1}{q^{k} - 1} \right ) { n - 1 \brack k - 1 }_{q}\] \[= \left ( \frac{q^{n-k}(q^{k} - 1) + (q^{n-k} - 1)}{q^{k} - 1} \right ) { n - 1 \brack k - 1 }_{q}\] \[= \left ( \frac{q^{n -k} - 1}{q^{k} - 1} \right ) { n - 1 \brack k - 1 }_{q} + q^{n-k} \left ( \frac{q^{k} - 1}{q^{k} - 1} \right ) { n - 1 \brack k - 1 }_{q}\] \[= {n - 1 \brack k }_{q} + q^{n-k} { n - 1 \brack k - 1 }_{q}\]and
\[{ n \brack k }_{q}\] \[= \left ( \frac{q^{n} - 1}{q^{n-k} - 1} \right ) { n - 1 \brack k }_{q}\] \[= \left ( \frac{q^{n} - q^{k} + q^{k} - 1}{q^{n-k} - 1} \right ) { n - 1 \brack k }_{q}\] \[= \left ( \frac{q^{k}(q^{n-k} - 1) + (q^{k} - 1)}{q^{n-k} - 1} \right ) { n - 1 \brack k }_{q}\] \[= q^{k} { n - 1 \brack k }_{q} + \left ( \frac{q^{k} - 1}{q^{n-k} - 1} \right) { n - 1 \brack k }_{q}\] \[= q^{k} { n - 1 \brack k }_{q} + {n - 1 \brack k - 1}_{q}\] \[\implies { n \brack k }_{q} = {n - 1 \brack k }_{q} + q^{n-k} { n - 1 \brack k - 1 }_{q} = q^{k} { n - 1 \brack k }_{q} + {n - 1 \brack k - 1}_{q}\]and the general result then follows.
-
Suppose that \(\mathcal{A}\) is an algebra over \(\mathbb{R}\), \(X,Y \in \mathcal{A}\), and \(YX = qXY\).
Assume that \((X + Y)^k = \sum\limits_{j = 0}^{k} {k \brack j}_q X^j Y^{k-j}\) for some \(k \in \mathbb{N}\).
\[\implies (X+Y)^{k+1}\] \[= \left (\sum\limits_{j=0}^{k} {k \brack j}_q X^j Y^{k-j} \right ) (X + Y)\] \[= \sum\limits_{j=0}^{k} \left ( q^{k-j} {k \brack j}_q \right ) X^{(j+1)} Y^{k-j} + \sum\limits_{j=0}^{k} {k \brack j}_q X^j Y^{k-(j-1)}\] \[= \sum\limits_{j=1}^{k} \left ( q^{k-(j-1)} {k \brack j-1}_q \right ) X^j Y^{k-(j-1)} + \sum\limits_{j=0}^{k} \left ( {k \brack j}_q \right ) X^j Y^{k-(j-1)}\] \[= \sum\limits_{j=1}^{k} \left ( q^{k-(j-1)} {k \brack j-1}_q \right ) X^j Y^{k-(j-1)} + \sum\limits_{j=1}^{k} \left ( {k \brack j}_q \right ) X^j Y^{k-(j-1)} + Y^{k+1}\] \[= \sum\limits_{j=1}^{k} \left ({k \brack j} + q^{k-(j-1)} {k \brack j-1}_q \right ) X^j Y^{k-(j-1)} + Y^{k+1}\] \[= \sum\limits_{j=1}^{k} {k+1 \brack j}_q X^j Y^{k-(j-1)} + Y^{k+1}\][ by 2. ]
\[= \sum\limits_{j=0}^{k} {k+1 \brack j}_q X^j Y^{(k+1) - j}\] \[\implies (X + Y)^n = \sum\limits_{j = 0}^{n} {n \brack j}_q X^j Y^{n-j} \text{ for all } n \in \mathbb{N}\][ since clearly \(X + Y = {1 \brack 0 }_q X + {1 \brack 1}_q Y = \sum\limits_{j = 0}^{1} {1 \brack j}_q X^j Y^{1-j}\) as well ] .
-
Select arbitrary \(n, k \in \mathbb{N}\) such that \(k \leq n\), and assume that \({n \brack k}_q = \sum\limits_{j=0}^{r} q^{(r - j)(k - j)} { r \brack j }_q { n - r \brack k - j }_q\) for some \(r < k\).
\[\implies {n \brack k}_q\] \[= \sum\limits_{j=0}^{r} \left ( q^{(r - j)(k - j)} { r \brack j }_q \right ) { n - r \brack k - j }_q\] \[= \sum\limits_{j=0}^{r} \left ( q^{(r - j)(k - j)} { r \brack j }_q \right ) \left ( q^{(k - j)} { n - (r+1) \brack k - j }_q + { n - (r + 1) \brack k - (j+1) }_q \right )\][ by 2. ]
\[= \sum\limits_{j=0}^{r} \left ( q^{((r+1) - j)(k - j)} { r \brack j }_q \right ) { n - (r+1) \brack k - j }_q + \sum\limits_{j=0}^{r} \left ( q^{(r - j)(k - j)} { r \brack j }_q \right ) { n - (r+1) \brack k - (j+1) }_q\] \[= \sum\limits_{j=0}^{r} \left ( q^{((r+1) - j)(k - j)} { r \brack j }_q \right ) { n - (r+1) \brack k - j }_q + \sum\limits_{j=1}^{r+1} \left ( q^{(r - (j - 1))(k - (j-1))} { r \brack (j - 1) }_q \right ) { n - (r+1) \brack k - j }_q\] \[= q^{(r+1)(k)} {n - (r+1) \brack k}_q + \sum\limits_{j=1}^{r} \left ( q^{((r+1) - j)(k - j)} { r \brack j }_q + q^{(r - (j - 1))(k - (j-1))} { r \brack (j - 1) }_q\right ) { n - (r+1) \brack k - j }_q + { n - (r+1) \brack k - (r+1)}_q\] \[= q^{(r+1)(k)} {n - (r+1) \brack k}_q + \sum\limits_{j=1}^{r} \left ( q^{((r+1) - j)(k - j)} \left ( { r \brack j }_q + q^{(r + 1) - j} { r \brack (j - 1) }_q\right ) \right) { n - (r+1) \brack k - j }_q + { n - (r+1) \brack k - (r+1)}_q\] \[= q^{(r+1)(k)} {n - (r+1) \brack k}_q + \sum\limits_{j=1}^{r} \left ( q^{((r+1) - j)(k - j)} { r + 1 \brack j }_q \right ) { n - (r+1) \brack k - j }_q + { n - (r+1) \brack k - (r+1)}_q\][ again by 2. ]
\[= \sum\limits_{j=0}^{r+1} q^{((r + 1) - j)(k - j)} { r + 1 \brack j }_q { n - (r + 1) \brack k - j }_q\]as well.
\[\implies {n \brack k}_q = \sum\limits_{j=0}^{m} q^{(m - j)(k - j)} { m \brack j }_q { n - m \brack k - j }_q \text { for all } m \leq k \leq n\][ since, by 2., it is also the case that \({n \brack k }_q = q^{k} { n - 1 \brack k }_{q} + {n - 1 \brack k - 1}_{q} = \sum\limits_{j=0}^{m} q^{(m - j)(k - j)} { m \brack j }_q { n - m \brack k - j }_q\) when \(m = 1\) ].
The general result then follows, since \(n\) and \(k\) are arbitrary.